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Abstract
Phonon dispersion curves of austenitic stainless steels Fe–18Cr–16Ni–
10Mn and Fe–18Cr–12Ni–2Mo have been measured by triple-axis neutron
spectroscopy. The data were analysed using Born–von Karman interactions
as well as calculations including the contribution of conduction electrons on
the lattice dynamics. An appropriate description of the experimental data was
obtained by taking into account two-neighbour shells plus the contribution of
the electron gas. The elastic constants and moduli obtained are close to reported
results by ultrasonic studies on polycrystalline samples. The phonon densities
of states in both systems calculated from the dispersion curves agree well
with results obtained by time-of-flight neutron spectroscopy on polycrystalline
samples. The Debye temperature �(T ) shows a minimum around 40 K, similar
to copper and nickel.

1. Introduction

Austenitic stainless steels are widely applied because they combine high corrosion resistance
with good mechanical and physical properties. These properties can be tuned by variation
of the composition of the main elements Fe, Cr and Ni, by adding further alloying elements
and also by changes in their microstructure due to thermal and mechanical treatment. To
design a steel for a distinct application, a prediction of its properties based on its chemical
composition would be supportive. The effects of alloying additions on the engineering elastic
moduli of austenitic stainless steels have been investigated by ultrasonic measurements [1–3]
and inelastic neutron scattering [4]. As an example, it was found that adding Ni as well as
Cr (both as substitute for Fe) leads to an increase in the bulk modulus accompanied by a
decrease in the shear modulus [3]. These results contradict predictions based on the theory
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of elasticity, as substituting Fe with Cr leads to lattice expansion while substituting Fe with
Ni decreases the lattice parameter. Furthermore, it is remarkable that the bulk modulus and
the shear modulus change in opposite directions. These results indicate significant changes
in the interatomic bonding due to modifications in the chemical composition in such a way
that dilatational modes and shear modes are affected in a quite different manner. Recently, the
effects of alloying additions on the properties of austenitic stainless steels have been derived
from ab initio quantum mechanical calculations [5].

Phonon dispersion curves are often used to verify interatomic potentials. Moreover,
semi-empirical approaches, such as the embedded-atom method, require elastic constants and
characteristic points in phonon dispersion curves among the parameters for the determination
of interatomic potentials, from which the material properties can be derived.

In previous studies, the phonon dispersion branches L-[110] and T1-[110] of Fe–18Cr–
16Ni–10Mn steel, measured by time-of-flight neutron spectroscopy [6], and the low q regions
of the phonon dispersion branches,measured by triple-axis neutron spectroscopy [7],have been
presented. Also, the phonon dispersion branches of Fe–18Cr–12Ni–2Mo were measured along
the symmetry directions [100], [110] and [111] [8]. In this study, we present measurements of
the phonon dispersion branches and the vibrational frequency spectra of steels Fe–18Cr–16Ni–
10Mn and Fe–18Cr–12Ni–2Mo as well as corresponding model calculations. The parameters
of the model calculations have been used to derive elastic and thermal properties.

2. Experimental details

Single crystals of 15 × 15 × 25 mm3 (Fe–18Cr–12Ni–2Mo) and 8 × 8 × 40 mm3 (Fe–
18Cr–16Ni–10Mn) were prepared by the Bridgman method at the Tomsk State University,
Russia. The measurements of the dispersion branches were carried out at the triple-axis
spectrometer UNIDAS at Forschungszentrum Jülich, Germany. For both steels a lattice
parameter of 3.593(3) Å was obtained. The mosaic spread of the Fe–18Cr–12Ni–2Mo crystal
was determined to be 40′, whereas in the sample of Fe–18Cr–16Ni–10Mn a mosaic spread of
30′ was found. All measurements of both steels were carried out in constant-Q mode using
a fixed incident neutron energy of 14.74 meV. The measurements of the phonon density of
states were performed at the time-of-flight spectrometer DIN-2PI at the JINR, Dubna, Russia.
Polycrystalline plates of 10 × 18 × 65 mm3 (Fe–18Cr–16Ni–10Mn) and 2 × 150 × 150 mm3

(Fe–18Cr–12Ni–2Mo) were investigated using an incident neutron energy of 10.3 meV. The
range of momentum transfer was Q = 1.1–4.1 Å−1 for elastic scattering. Neutron energy
transfers h̄ω from 4 to 60 meV were measured. The data were corrected with respect to
background and detector efficiency.

3. Results and discussion

3.1. Phonon dispersion curves

The dispersion branches of Fe–18Cr–12Ni–2Mo and Fe–18Cr–16Ni–10Mn (figures 1 and 2)
are similar to those of various other fcc metals and alloys. Fe–18Cr–12Ni–2Mo shows a
slightly concave curvature in the T1-[110] branch in the low q region. A similar behaviour
was also observed in Ca [9], Yb [10], γ -Fe [11], Fe0.7Ni0.3 [12], and Fe0.72Pd0.28 [13]. This
behaviour is however not visible in Fe–18Cr–16Ni–10Mn. A possible reason for a concave
curvature in the T1-[110] branch could be anharmonicity of the potential or electron–phonon
interactions [9, 10]. Significant differences between Fe–18Cr–12Ni–2Mo and Fe–18Cr–
16Ni–10Mn can be found in the L-[110] branches, where Fe–18Cr–12Ni–2Mo shows lower
frequencies.
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Figure 1. Measured phonon disper-
sion curves for Fe–18Cr–12Ni–2Mo
(×), Fe–18Cr–16Ni–10Mn (◦), cal-
culations based on Born–von Karman
model, five-neighbour shells, gener-
alized force matrix, for Fe–18Cr–
12Ni–2Mo (——) and Fe–18Cr–
16Ni–10Mn (· · · · · ·).

Figure 2. Measured phonon disper-
sion curves for Fe–18Cr–16Ni–10Mn
(◦), calculations based on Born–
von Karman model, two-neighbour
shells, generalized force matrix with-
out (——) and with electron gas con-
tribution (· · · · · ·).

The data were analysed by model calculations based on Born–von Karman interactions
using generalized force matrices as well as the approximation of axial symmetrical interactions.
The model calculations were carried out up to eight-neighbour shells. An adequate fit to the
experimental points was obtained by including five-neighbour shells. Taking into account
more neighbour shells did not lead to improvements in the description of the experimental
data. Model calculations based on generalized force matrices gave better descriptions of the
experimental results than calculations using the assumption of axial symmetrical interactions,
especially for cases of only few-neighbour shells.

The elastic constants were derived from the interatomic force constants by expanding the
components of the dynamical matrices in the low q limit. The polycrystalline elastic moduli
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Table 1. Elastic properties in austenitic stainless steels.

Fe–18Cr–12Ni–2Mo Fe–18Cr–16Ni–10Mn

BvK 5 neigh. Low q Ultrasonic [15] BvK 5 neigh. Low q Ultrasonic [3]

C11 (GPa) 195.7 195.3 206 221.8 199.4 206.8
C12 (GPa) 130.1 132.1 133 154.0 125.3 134.6
C44 (GPa) 111.0 107.9 119 125.4 101.6 114.7
G (GPa) 68.3 67.2 74.2 74.5 68.5 72.3
B (GPa) 152.0 153.2 157.3 176.6 150.0 158.7
E (GPa) 180.4 175.8 194.7 199.0 178.5 190.4
ν 0.30 0.31 0.29 0.31 0.30 0.30
C12/C11 0.665 0.676 0.647 0.694 0.628 0.651
A 3.38 3.41 3.27 3.70 2.74 3.18

B , G and E and the Poisson ration ν were calculated from the elastic constants. In cubic
systems, the bulk modulus is given by

B = (C11 + 2C12)/3. (1)

For the calculation of the shear modulus, the Hershey–Kröner–Eshelby averaging
method [14] was applied:

G3 + αG2 + βG + γ = 0 (2)

where α, β and γ are equal to:

α = 5C11 + 4C12

8
(3)

β = −C44(7C11 − 4C12)

8
(4)

γ = −C44(C11 − C12)(C11 + 2C12)

8
. (5)

Table 1 illustrates the elastic properties derived from the Born–von Karman model
(generalized matrices) including five-neighbour shells. Results obtained from ultrasonic
studies on polycrystalline samples are also included. The single crystal elastic constants of
Fe–18Cr–16Ni–2Mo have been derived by Ledbetter from the polycrystalline elastic moduli,
using two empirical relations for fcc Fe–Cr–Ni alloys: C12/C11 = 0.635 and for Zener’s elastic
anisotropy ratio A = 2C44/(C11 − C12) = 3.51 [15]. The second column of table 1 shows
the averaged values from his calculations. We also calculated the elastic moduli of Fe–18Cr–
16Ni–10Mn using a relation presented by Kim et al [3], which describes the separate effects
of alloying elements on the elastic moduli of Fe–Cr–Ni–Mn austenitic stainless steels. To our
knowledge, no ultrasonic studies on single crystals of Fe–18Cr–12Ni–2Mo or Fe–18Cr–16Ni–
10Mn have been reported so far.

The calculations using Born–von Karman models disclose the existence of long range
interactions, supposedly related to conduction electrons. The effects of the conduction
electrons can be described by screening of the Coulomb interactions between the metal ions.
A description of the lattice dynamics of metals taking into account the effects of conduction
electrons was introduced by Krebs [16] and applied for fcc metals using the Morse potential
by Mohammed et al [17]. The elements of the dynamical matrix consist of two parts [17]:

DTOT
αβ = Di

αβ + De
αβ .

The first part is due to Coulomb interactions between the metal ions. The second part
corresponds to the screening effect of conduction electrons and is given by [17]. In these
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Figure 3. Vibrational
density of states of steel
Fe–18Ni–16Cr–10Mn:
(•) experimental data,
(——) multiphonon con-
tribution, and (–�–) after
multiphonon correction.

model calculations the discrete translation symmetry of the crystalline system is taken into
account. The model contains the following assumptions: electrons are free fermions at T = 0
and the screened potential of atoms follows a Yukawa potential. The electronic term in
the dynamical matrix introduces only one refineable parameter, ke = 18–20 GPa, the bulk
modulus of the electron gas [17]. From the general properties of electron gas a value of
kc = 0.6455 kF = 0.700 Å−1 was obtained. kc was determined using a Thomas–Fermi
approximation with an additional correction based on the many-body perturbation theory.
From figure 2 it can be seen that for two-neighbour shells the insertion of electron gas terms in
the components of the dynamical matrix leads to a significant improvement in the description
of the experimental data compared to the conventional Born–von Karman model. Because of
the long range Coulomb forces much fewer neighbour shells are required for an adequate fit to
the experimental points. The improvement is especially pronounced in the regions close to the
edges of the Brillouin zone in all directions. This effect is probably related to the screening of
the Coulomb potential due to conduction electrons.

3.2. Frequency distribution spectra

The measured frequency distribution spectra for Fe–18Cr–12Ni–2Mo and Fe–18Cr–16Ni–
10Mn are similar to those of other fcc systems, namely copper [18] and nickel [19]. The
differences in the frequency spectra of both steels are in the range of the experimental errors.
We used the method presented by Dawidowski et al [20, 21] for the calculation of multiphonon
scattering contributions. Figures 3–5 present the vibrational density of states for both steels
before and after subtraction of the multiphonon contribution. The vibrational density of states
has also been derived from the modelling of the dispersion branches. The method of Gilat and
Raubenheimer [22] was applied to the Born–von Karman model, generalized force matrices,
including two-neighbour shells. The estimation on the error bars calculation which only include
the statistical error show that differences between two phonon density of states are within the
error bars. The results were convoluted with the resolution function of the spectrometer to
enable a comparison with the data derived from the frequency spectra; see figure 6.

From the vibrational density of states the Debye temperature �(T ) can be obtained. In
further text �D is the Debye temperature in the low temperature limit and �∞ in the high
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Figure 4. Vibrational
density of states of steel
Fe–18Ni–12Cr–2Mo:
(•) experimental data,
(——) multiphonon con-
tribution, and (–�–) after
multiphonon correction.

Figure 5. Vibrational
density of states of steels:
(•) Fe–18Cr–12Ni–2Mo,
and (�) Fe–18Cr–16Ni–
10Mn after multiphonon
correction.

temperature limit, respectively. In equation (6) x = h̄ω/kT .
∫ ωmax

0

( h̄ω
kT )2e

h̄ω
kT

(e
h̄ω
kT − 1)2

g(ω) dω = 3

(
T

�

)3 ∫ �/T

0

x4ex

(ex − 1)2
dx . (6)

Expanding equation (6) to the low energy limit yields

g(ω) = 3h̄3ω2

(k�D)3
. (7)

Applying equation (6) to our data on steels Fe–18Cr–16Ni–10Mn and Fe–18Cr–16Ni–2Mo
reveals 406 and 410 K, respectively. These results are quite close to the Debye temperatures
�D for Fe–Cr–Ni alloys reported by Beskrovni et al [4]. The Debye temperature �D is related
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Figure 6. (•) Vibrational
density of states of steel Fe–
18Cr–16Ni–10Mn: (——)
calculation using Born–von
Karman model, generalized
force matrices including two-
neighbour shells, and (· · · · · ·)
calculation using the same
model after convolution with
the instrumental resolution
function.

Figure 7. Debye temperature as a
function of temperature for austenitic
stainless steels: (×) Fe–18Cr–16Ni–
10Mn, (�) Fe–18Cr–12Ni–2Mo.

to the velocities of sound in polycrystalline materials reported by [4]:

�D = h

k

(
4πV

9N

)−1/3( 1

v3
l

+
2

v3
t

)−1/3

. (8)

Using G = ρv2
t and B = ρv2

l − 4
3 G [4] and our results for G and B presented in table 1

we obtain �D = 416 K for Fe–18Cr–16Ni–10Mn and �D = 411 K for Fe–18Cr–12Ni–2Mo,
in satisfactory agreement with results obtained from the vibrational densities of states. In
figure 7 the Debye temperature �(T ) shows a minimum around 30–40 K for both steels.
Similar minima positions have also been reported for copper [18] and nickel [19].

The specific heat capacities CV (T ) of both steels were calculated from the vibrational
densities of states by

CV = k
∫ ωmax

0

( h̄ω
kT )2e

h̄ω
kT

(e
h̄ω
kT − 1)2

g(ω) dω. (9)

The values of CV (T ) obtained for both steels correspond to the Debye model.
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4. Conclusions

Austenitic stainless steels Fe–18Cr–12Ni–2Mo and Fe–18Cr–16Ni–10Mn show very similar
phonon dispersion curves which can be well described by model calculations including
interactions of two-neighbour shells plus contributions of conduction electrons on the lattice
dynamics. Our results for the elastic constants and engineering elastic moduli are close to
results obtained by ultrasonic studies on polycrystalline samples. For further investigations of
alloying effects on elastic constants and moduli, ultrasonic measurements on single crystals
would be supportive. The calculations of vibrational densities of states from modelling of
phonon dispersion branches were confirmed by measurements of the vibrational frequency
spectra. Experimental data based on phonon density of states show that differences between
two samples are inside error bars.
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